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Abstract
We propose a set of conventional Bethe ansatz equations and a corresponding
expression for the eigenvalues of the transfer matrix for the open spin- 1

2
XXZ quantum spin chain with nondiagonal boundary terms, provided that
the boundary parameters obey a certain linear relation.

PACS numbers: 75.10.Jm, 02.30.Ik

1. Introduction

Consider the open spin- 1
2 XXZ quantum spin chain with nondiagonal boundary terms, defined

by the Hamiltonian [1]

H = 1

2

{
N−1∑
n=1

(
σx

n σ x
n+1 + σy

n σ
y

n+1 + cosh ησ z
nσ z

n+1

)

+ sinh η

[
coth ξ−σ z

1 +
2κ−

sinh ξ−

(
cosh θ−σx

1 + i sinh θ−σ
y

1

)

− coth ξ+σ
z
N − 2κ+

sinh ξ+

(
cosh θ+σ

x
N + i sinh θ+σ

y

N

)] }
(1.1)

where σx, σ y, σ z are the usual Pauli matrices, η is the bulk anisotropy parameter, ξ±, κ±, θ±
are arbitrary boundary parameters and N is the number of spins. This is the prototypical
integrable quantum spin chain with boundary. It is related to many other models, including
the sine-Gordon field theory [2]. Moreover, this model has applications in various branches
of physics, including condensed matter and statistical mechanics.

This model has resisted solution for many years (see, e.g., [3]). The main difficulty is
that, in contrast to the special case of diagonal boundary terms (i.e., κ± = 0) considered in
[4, 5], a simple pseudovacuum (reference) state does not exist. For example, the state with all

spins up
(1

0

)⊗N
is not an eigenstate of the Hamiltonian.
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We recently formulated [6] a method of deriving the Bethe ansatz solution of integrable
spin chain (vertex-type) models which does not rely on the existence of a pseudovacuum state.
In particular, we used this method to solve the model (1.1) for the special case

κ+ = κ− ξ+ = ξ− θ+ = θ− = 0 N = odd. (1.2)

Here we propose the solution for a more general case. Indeed, in terms of the boundary
parameters α∓, β∓ introduced in equation (3.24), we find an expression for the eigenvalues of
the transfer matrix corresponding to the Hamiltonian

H = 1

2

{
N−1∑
n=1

(
σx

n σ x
n+1 + σy

n σ
y

n+1 + cosh ησ z
nσ z

n+1

)
+ sinh η

[
coth α− tanh β−σ z

1 + csch α− sech β−
(
cosh θ−σx

1 + i sinh θ−σ
y

1

)
− coth α+ tanh β+σ

z
N + csch α+ sech β+

(
cosh θ+σ

x
N + i sinh θ+σ

y

N

)]}
(1.3)

where the boundary parameters are subject to the linear relation

α− + β− + α+ + β+ = ±(θ− − θ+) + ηk (1.4)

where k is an even integer if N is odd, and is an odd integer if N is even. In the recent paper
[7], similar results have been obtained by a different approach.

The outline of this paper is as follows. In section 2, we briefly review the construction
of the model’s transfer matrix, and list some of its important properties. In section 3, we find
the eigenvalues of the transfer matrix by the three-step procedure formulated in [6]. The first
two steps, which lead to a functional relation for the transfer matrix, are the same as in [6, 8],
except for the introduction of the parameters θ∓. The principal new results appear at the third
step, where we succeed to recast the functional relation in terms of a determinant for the more
general case (1.4). We conclude with a brief discussion of our results in section 4.

2. The transfer matrix

The fundamental transfer matrix t (u) corresponding to the model (1.1) is given by [5]

t (u) = tr0 K+
0 (u)T0(u)K−

0 (u)T̂ 0(u) (2.1)

where the monodromy matrices are given by

T0(u) = R0N(u) · · · R01(u) T̂ 0(u) = R10(u) · · · RN0(u) (2.2)

and the R matrix is the solution of the Yang–Baxter equation given by

R(u) =




sinh(u + η) 0 0 0
0 sinh u sinh η 0
0 sinh η sinh u 0
0 0 0 sinh(u + η)


 . (2.3)

Moreover, the K− matrix is the solution of the boundary Yang–Baxter equation [9] given by
[1, 2]

K−(u) =
(

sinh(ξ− + u) κ−eθ− sinh 2u

κ−e−θ− sinh 2u sinh(ξ− − u)

)
(2.4)

which evidently depends on three boundary parameters ξ−, κ−, θ−. It is related to the
symmetric matrix K−(u)|θ−=0 used in [6, 8] by a gauge transformation,

K−(u) = MK−(u)|θ−=0 M−1 (2.5)
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with

M =
(

e
1
2 θ− 0

0 e− 1
2 θ−

)
. (2.6)

The matrix K+(u) is equal to K−(−u − η) with (ξ−, κ−, θ−) replaced by (ξ+, κ+, θ+). Finally,
tr0 denotes trace over the (two-dimensional) ‘auxiliary space’ 0. Further details about the
construction of this transfer matrix can be found in [5, 8].

The transfer matrix constitutes a one-parameter commutative family of matrices

[t (u), t (v)] = 0. (2.7)

The Hamiltonian (1.1) is related to the first derivative of the transfer matrix,

H = c1
∂

∂u
t (u)

∣∣∣
u=0

+ c2I (2.8)

where

c1 = 1

4 sinh ξ− sinh ξ+ sinh2N−1 η cosh η
c2 = − sinh2 η + N cosh2 η

2 cosh η
(2.9)

and I is the identity matrix. The two relations (2.7), (2.8) signal that the model is integrable.
Moreover, it is evident that in order to determine the energy eigenvalues, it suffices to determine
the eigenvalues of the transfer matrix.

The transfer matrix has the periodicity property

t (u + iπ) = t (u) (2.10)

as well as crossing symmetry

t (−u − η) = t (u) (2.11)

and the asymptotic behaviour (for κ± �= 0)

t (u) ∼ −κ−κ+ cosh(θ− − θ+)
eu(2N+4)+η(N+2)

22N+1
I + · · · for u → ∞. (2.12)

3. Bethe ansatz solution

We now proceed to find an expression for the transfer matrix eigenvalues using the method
formulated in [6]. This method consists of three main steps.

3.1. Step 1: fusion hierarchy

The first step is to obtain the model’s so-called fusion hierarchy. The transfer matrix (2.1)
is actually the first

(
j = 1

2

)
member of an infinite hierarchy of commuting transfer matrices

t (j)(u) corresponding to spin-j (i.e., (2j + 1)-dimensional) auxiliary spaces, j = 1
2 , 1, 3

2 , . . ..
Using the fusion procedure for R [10, 11] and K [12, 13] matrices, one finds that these
higher-level transfer matrices obey the relations

t (j)(u) = ζ̃2j−1(2u + (2j − 1)η)

[
t (j− 1

2 )(u)t (
1
2 )(u + (2j − 1)η)

− �(u + (2j − 2)η)ζ̃2j−2(2u + (2j − 2)η)

ζ(2u + 2(2j − 1)η)
t(j−1)(u)

]
(3.1)
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with t (0) = I, and j = 1, 3
2 , . . .. The quantum determinant �(u) is given by

�(u) = −[sinh(u + η + ξ−) sinh(u + η − ξ−) + κ2
− sinh2(2u + 2η)]

× [sinh(u + η + ξ+) sinh(u + η − ξ+) + κ2
+ sinh2(2u + 2η)]

× sinh 2u sinh(2u + 4η)ζ(u + η)2N (3.2)

and

ζ̃j (u) =
j∏

k=1

ζ(u + kη) ζ̃0(u) = 1 (3.3)

ζ(u) = −sinh(u + η) sinh(u − η). (3.4)

These relations are the same as those for the case of symmetric K matrices (θ∓ = 0)

[8]. We remark that the spin-j matrix K−
〈1...2j〉(u) is related to the corresponding matrix with

θ− = 0 by a generalization of the gauge transformation (2.5),

K−
〈1...2j〉(u) = M1 . . .M2j K−

〈1...2j〉(u)|θ−=0 M−1
2j . . .M−1

1 . (3.5)

3.2. Step 2: truncation at roots of unity

The second step is to observe [8] that for anisotropy values

η = iπ

p + 1
p = 1, 2, . . . (3.6)

(and hence q ≡ eη is a root of unity, satisfying qp+1 = −1), the level-p+1
2 transfer matrix can

be expressed in terms of a transfer matrix of one level lower,

t (
p+1

2 )(u) = α(u)
[
t (

p−1
2 )(u + η) + β(u)I

]
. (3.7)

The quantities α(u) and β(u) are given by the corresponding expressions (4.31) in [8], except
σ∓(u) → e(p+1)θ∓σ∓(u) and ρ∓(u) → e−(p+1)θ∓ρ∓(u), as a consequence of (3.5).

This result provides an example of McCoy’s dictum ‘complicated is simple’ [14]. Indeed,
the essential point of this step is to exploit the higher symmetry which occurs at roots of unity
to help solve the model.

Combining the fusion hierarchy (3.1) and the truncation identity (or ‘closing relation’)
(3.7) for the η values (3.6), we arrive at a functional relation for the fundamental transfer
matrix t (u) ≡ t (

1
2 )(u) (and hence, for the corresponding eigenvalues 
(u)) of order p + 1

[6, 8]:


(u)
(u + η) . . . 
(u + pη) − δ(u − η)
(u + η)
(u + 2η) . . . 
(u + (p − 1)η)

− δ(u)
(u + 2η)
(u + 3η) . . . 
(u + pη)

− δ(u + η)
(u)
(u + 3η)
(u + 4η) . . . 
(u + pη)

− δ(u + 2η)
(u)
(u + η)
(u + 4η) · · · 
(u + pη) − · · ·
− δ(u + (p − 1)η)
(u)
(u + η) · · · 
(u + (p − 2)η) + · · · = f (u) (3.8)

where δ(u) is defined by

δ(u) = �(u)

ζ(2u + 2η)
. (3.9)

Moreover, the function f (u) is given by

f (u) = (−1)p(N+1)

22p(N+1)
sinh2N((p + 1)u)

cosh2
(
(p + 1)u + iπ

2 ε
)

cosh2((p + 1)u)

×{n(u; ξ−, κ−)n(u;−ξ+, κ+) + n(u;−ξ−, κ−)n(u; ξ+, κ+)

+ 2(−1)N(−κ−κ+)
p+1 sinh2(2(p + 1)u) cosh((p + 1)(θ− − θ+))} (3.10)
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where ε = 2frac(p/2) equals 0 if p is even, and equals 1 if p is odd; and the function n(u; ξ, κ)

is defined by

n(u; ξ, κ) = sinh((p + 1)(ξ + u)) +

[ p+1
2 ]∑

l=1

cp,lκ
2l sinh((p + 1)u + (p + 1 − 2l)ξ) (3.11)

with

cp,l = (p + 1)

l!

l−2∏
k=0

(p − l − k).

For instance, for the case p = 3, the functional relation is given by


(u)
(u + η)
(u + 2η)
(u + 3η) − δ(u − η)
(u + η)
(u + 2η)

− δ(u)
(u + 2η)
(u + 3η) − δ(u + η)
(u)
(u + 3η)

− δ(u + 2η)
(u)
(u + η) + δ(u)δ(u + 2η)

+ δ(u − η)δ(u + η) = f (u). (3.12)

3.3. Step 3: determinant representation

Following the strategy used in [15] to solve RSOS models, the third and final step is to rewrite
the functional relation as the determinant of a (p + 1) × (p + 1) matrix. Let us assume that
this matrix has the same form as the one for the diagonal case (κ± = 0) and for the case (1.2).
That is, we assume the functional relation can be cast in the form [6]

det





0 −h′
−1 0 0 . . . 0 0 −h0

−h1 
1 −h′
0 0 . . . 0 0 0

0 −h2 
2 −h′
1 . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . −hp−1 
p−1 −h′
p−2

−h′
p−1 0 0 0 . . . 0 −hp 
p




= 0 (3.13)

where 
k = 
(u + ηk), hk = h(u + ηk), h′
k = h′(u + ηk),

h′(u) = h(−u − 2η) (3.14)

and the function h(u) is yet to be determined. We find that the functional relation (3.8) can
indeed be recast in the form (3.13), provided that h(u) satisfies the three conditions

h(u + iπ) = h(u) (3.15)

h(u + η)h(−u − η) = δ(u) (3.16)

p∏
j=0

h(u + jη) +
p∏

j=0

h(−u − jη) = f (u). (3.17)

The results [6] for h(u) in the diagonal case and in the case (1.2) suggest that, in general, h(u)

has form

h(u) = −sinh2N(u + η)
sinh(2u + 2η)

sinh(2u + η)
g−(u)g+(u) (3.18)

where the functions g∓(u) contain all the dependence on the boundary parameters.
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Then second condition (3.16) together with (3.2), (3.9) and (3.18) implies that

g−(u)g+(u)g−(−u)g+(−u) = (sinh2 u − sinh2 ξ− + κ2
− sinh2 2u)

× (
sinh2 u − sinh2 ξ+ + κ2

+ sinh2 2u
)
. (3.19)

This suggests that g∓(u) obey the functional equation

g∓(u)g∓(−u) = −(
sinh2 u − sinh2 ξ∓ + κ2

∓ sinh2 2u
)
. (3.20)

Assuming that the functions g∓(u) are given by

g∓(u) = 2κ∓ sinh(u + α∓) cosh(u + β∓) (3.21)

(3.20) implies that the parameters α∓, β∓ obey

sinh2 α∓ cosh2 β∓ = 1

4κ2∓
sinh2 ξ∓ cosh2 α∓ sinh2 β∓ = 1

4κ2∓
cosh2 ξ∓. (3.22)

A similar reparametrization appears in [2, 7]. Below we shall argue that (3.21) is essentially
the unique solution of (3.19).

The third condition (3.17) together with (3.10) and (3.18) implies that1

p∏
j=0

g−(u + jη)g+(u + jη) +
p∏

j=0

g−(−u − jη)g+(−u − jη)

= (−1)p

22p
{n(u; ξ−, κ−)n(u;−ξ+, κ+) + n(u;−ξ−, κ−)n(u; ξ+, κ+)

+ 2(−1)N(−κ−κ+)
p+1 sinh2(2(p + 1)u) cosh((p + 1)(θ− − θ+))} (3.23)

where n(u; ξ, κ) is given by equation (3.11). We find that this requirement can be satisfied for
p = odd, with g∓(u) given by (3.21) and2

sinh α− cosh β− = 1

2κ−
sinh ξ− cosh α− sinh β− = 1

2κ−
cosh ξ−

(3.24)
sinh α+ cosh β+ = − 1

2κ+
sinh ξ+ cosh α+ sinh β+ = − 1

2κ+
cosh ξ+

provided that the various parameters obey the linear constraint

α− + β− + α+ + β+ = ±(θ− − θ+) + ηk (3.25)

where k is an even integer if N is odd, and is an odd integer if N is even.
In short, the functional relations can be cast in the determinant form (3.13) for p = odd

with

h(u) = −sinh2N(u + η)
sinh(2u + 2η)

sinh(2u + η)

× 4κ−κ+ sinh(u + α−) cosh(u + β−) sinh(u + α+) cosh(u + β+) (3.26)

where α∓, β∓ are defined by (3.24) and satisfy the constraint (3.25).
We now proceed as in [6, 15], and assume that the matrix in (3.13) has the null vector

(Q0,Q1, . . . ,Qp). That is,


0Q0 − h′
−1Q1 − h0Qp = 0

−hkQk−1 + 
kQk − h′
k−1Qk+1 = 0 k = 1, . . . , p − 1

−h′
p−1Q0 − hpQp−1 + 
pQp = 0. (3.27)

1 Note that the right-hand side of (3.23) depends on N only through its parity (−1)N .
2 The requirement of including the special case (1.2), which corresponds to α− = −α+, β− = −β+, k = 0, helps to
resolve the sign ambiguity in passing from (3.22) to (3.24).
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We make the ansatz Qk = Q(u + ηk), where Q(u) is given by

Q(u) =
M∏

j=1

sinh(u − uj ) sinh(u + uj + η) (3.28)

which has the crossing symmetry Q(u) = Q(−u − η). The zeros uj of Q(u) are still to be
determined. Equations (3.27) and (3.14) imply that the eigenvalues are given by


(u) = h(u)
Q(u − η)

Q(u)
+ h(−u − η)

Q(u + η)

Q(u)
. (3.29)

We verify that this result is consistent with both the periodicity (2.10) and crossing (2.11)
properties of the transfer matrix. The requirement that 
(u) be analytic at u = uj yields the
Bethe ansatz equations

h(uj )

h(−uj − η)
= − Q(uj + η)

Q(uj − η)
j = 1, . . . ,M. (3.30)

The asymptotic behaviour (2.12), together with result (3.29) for the eigenvalues and constraint
(3.25), implies that the number M of Bethe roots is given by

M = 1
2 (N − 1 + k) (3.31)

where k is the integer appearing in (3.25). We leave to a future investigation the interesting
question of determining further restrictions on the value of k, which presumably is related to
the question of completeness.

We now argue that (3.21) is essentially the unique solution of (3.19). Indeed, if g̃∓(u) are
also solutions of (3.19), then

g̃−(u)g̃+(u) = g−(u)g+(u)φ(u) (3.32)

where g∓(u) are given by (3.21), and φ(u) satisfies

φ(u)φ(−u) = 1. (3.33)

The periodicity condition (3.15) implies that φ(u) has the same periodicity

φ(u + iπ) = φ(u). (3.34)

We infer from (3.33) and (3.34) that φ(u) is a CDD-like factor

φ(u) =
∏
j

sinh(u + vj )

sinh(u − vj )
. (3.35)

The requirement that 
(u) be analytic then restricts φ(u) to the form

φ(u) = q(u − η)

q(u)
where q(u) =

∏
j

sinh(u − vj ) sinh(u + η + vj ). (3.36)

This is equivalent to having additional Bethe roots, which can be included in Q(u) (3.28).
Although the above results for the eigenvalues (3.26), (3.29), (3.30) have been obtained

under the assumption that η is restricted to the values (3.6) with p odd, we expect that these
results remain valid for generic values of η. Indeed, we have explicitly verified that these
expressions reproduce the correct eigenvalues for N = 0 (with M = 0) and N = 1 (with
M = 1) for arbitrary η.
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4. Conclusion

Our proposed expression for the eigenvalues 
(u) of the transfer matrix (2.1) corresponding
to the Hamiltonian (1.3) is given by (3.29), where h(u) and Q(u) are given by (3.26) and
(3.28), respectively; the Bethe ansatz equations are given by (3.30), with M given by (3.31);
and the parameters α∓, β∓ (which are related to ξ∓, κ∓ by (3.24)) must satisfy the constraint
(3.25).

It remains an open question whether a solution with Bethe ansatz equations of the
‘conventional’ form (3.30) can be found which does not require a constraint among the
boundary parameters. (Although the solution proposed in [8] does not require any constraint
among the boundary parameters, it holds only for the η values (3.6), and the Bethe ansatz
equations are not of the conventional form.)

For the special case (1.2), an analysis of the thermodynamic (N → ∞) limit and an
extension to higher-dimensional representations have recently been given in [16]. For the
more general case discussed here, it should now be possible to address such questions, and
also to find generalizations to higher rank algebras, for both the trigonometric and elliptic
cases.
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